Multi-corner Parametric Yield Estimation via Bayesian Inference on Bernoulli Distribution with Conjugate Prior

Jiahe Shi', Zhengqi Gao¹, Jun Tao ${ }^{1}$, Yangfeng Su², Dian Zhou ${ }^{3}$ and Xuan Zeng ${ }^{1}$

1 ASIC \& System State Key Lab, School of Microelectronics, Fudan University, Shanghai, China, 2 School of Mathematical Sciences, Fudan University, Shanghai, China,

3 Dept. of EE, University of Texas at Dallas, Dallas, USA
2020 IEEE International Symposium on Circuits and Systems
Virtual, October 10-21, 2020

Parametric Yield Estimation

Guarantee the robustness of circuit designs

- Parametric Yield Estimation methods
- Statistical approaches
- Estimate the PDF of the performance of interests (Pols) from a large number of transistor-level simulations
- Model-based methods
- Approximate the Pols by analytical functions of process variations
- Estimate the PDFs of Pols via numerical methods

Parametric Yield Estimation

- CHALLENGES

- Measuring the exact value of a continuous Pol is expensive
- VCO
- Circuit Performances over all process, voltage and temperature (PVT) corners are correlated
- Different process corners

Parametric Yield Estimation

- CHALLENGES

- Measuring the exact value of a continuous Pol is expensive
- VCO

Model the circuit output as a Bernoulli random variable

- Circuit Performances over all process, voltage and temperature (PVT) corners are correlated
- Different process corners

Encode the correlation of yields over all corners

Multi-corner Yield Estimation

- Example: Access operation

$$
\begin{aligned}
& x= \begin{cases}1 & \text { if success } \\
0 & \text { if fail }\end{cases} \\
& p\left(x \mid \beta_{k}\right)=\beta_{k}^{x} \cdot\left(1-\beta_{k}\right)^{1-x}
\end{aligned}
$$

$x=\left\{\begin{array}{lll}1 & \text { if success } & \beta_{k}: \\ 0 & \text { if fail } & \text { Output of the binary testing } \\ p\left(x \mid \beta_{k}\right)=\beta_{k}^{x} \cdot\left(1-\beta_{k}\right)^{1-x} & \text { Parametric yield at the } k \text {-th corner }\end{array}\right.$
x : Output of the binary testing

Simplified SRAM array with A cells

Multi-corner Yield Estimation

Simplified SRAM array with A cells

- Example: Access operation

$$
\begin{aligned}
& x= \begin{cases}1 & \text { if success } \\
0 & \text { if fail }\end{cases} \\
& p\left(x \mid \beta_{k}\right)=\beta_{k}^{x} \cdot\left(1-\beta_{k}\right)^{1-x}
\end{aligned}
$$

x : Output of the binary testing β_{k} : Parametric yield at the k-th corner

- Likelihood
D : Training dataset over all corners Number of data at one corner Number of corners

$$
\begin{aligned}
& \begin{aligned}
p(\mathrm{D} \mid \boldsymbol{\beta}) & =\prod_{n=1}^{N} \prod_{k=1}^{K} \beta_{k}^{r_{k}^{n}} \cdot\left(1-\beta_{k}\right)^{1-x_{k}^{n}} \\
& =\prod_{k=1}^{K} \beta_{k}^{M_{k}} \cdot\left(1-\beta_{k}\right)^{N-M_{k}}
\end{aligned} \\
& \text { where, } M_{k}=\sum_{n=1}^{N} x_{k}^{n}
\end{aligned}
$$

Multi-corner Yield Estimation

- Problem definition:

$$
\begin{array}{cll}
p(\boldsymbol{\beta} \mid \mathrm{D}) \propto p(\boldsymbol{\beta}) \cdot p(\mathrm{D} \mid \boldsymbol{\beta}) & p(\boldsymbol{\beta} \mid D): & \text { Posterior distribution } \\
\max _{\boldsymbol{\beta}} \quad p(\boldsymbol{\beta} \mid \mathrm{D}) & p(\boldsymbol{\beta}): & \text { Prior distribution } \\
p(D \mid \boldsymbol{\beta}): & \text { Likelihood }
\end{array}
$$

- Bayesian Inference method based on Bernoulli distribution (BI-BD) [TCAD 2019]
- Models the circuit output as a Bernoulli random variable
- Adopts a multivariate Gaussian distribution as prior distribution
- Calculate the multi-corner yields via posterior distribution approximation

Can not analytically derive the exact posterior but approximate it via an iterative method

Bayesian Inference

Sense
Amplifier
Simplified SRAM array with A cells

- Likelihood function

$$
\begin{aligned}
p(\mathrm{D} \mid \boldsymbol{\beta}) & =\prod_{n=1}^{N} \prod_{k=1}^{K} \beta_{k}^{r_{k}} \cdot\left(1-\beta_{k}\right)^{1-)_{k}^{n}} \\
& =\prod_{k=1}^{K} \beta_{k}^{M_{k}} \cdot\left(1-\beta_{k}\right)^{N-M_{k}}, \\
& \text { where, } \quad M_{k}=\sum_{n=1}^{N} x_{k}^{n}
\end{aligned}
$$

- Prior distribution conjugate to the likelihood function

$$
p(\boldsymbol{\beta} \mid \boldsymbol{\alpha}, L)=\prod_{k=1}^{K} p\left(\beta_{k} \mid \alpha_{k}, L\right)=\frac{1}{Z_{1}} \cdot \prod_{k=1}^{K} \beta_{k}^{\alpha_{k}} \cdot\left(1-\beta_{k}\right)^{L-\alpha_{k}}
$$

$$
\text { where, } Z_{1}=\prod_{k=1}^{K} B\left(\alpha_{k}+1, L+1-\alpha_{k}\right) \begin{array}{ll}
\alpha_{k}: & \begin{array}{l}
\text { Hyper-parameter at } k \text {-th corner } \\
L:
\end{array} \\
\text { Hyper-parameter }
\end{array}
$$

The prior distribution is parametrized by the hyper-parameters $\Theta=\{L, \boldsymbol{\alpha}\}$, $\boldsymbol{\alpha}=\left[\begin{array}{llll}\alpha_{1} & \alpha_{2} & \cdots & \alpha_{K}\end{array}\right]^{T} \in \mathfrak{R}^{K}$

The priors over different corners share a unique hyper-parameter L

Bayesian Inference

Sense
Amplifier
Simplified SRAM array with A cells

$$
p(\boldsymbol{\beta} \mid \mathrm{D}, \boldsymbol{\alpha}, L) \propto p(\boldsymbol{\beta} \mid \boldsymbol{\alpha}, L) \cdot p(\mathrm{D} \mid \boldsymbol{\beta})
$$

- Posterior distribution

$$
\begin{aligned}
p(\boldsymbol{\beta} \mid \mathrm{D}, \boldsymbol{\alpha}, L) & =\frac{1}{Z_{2}} \cdot \prod_{k=1}^{K} \beta_{k}^{\alpha_{k}+M_{k}} \cdot\left(1-\beta_{k}\right)^{N+L-\left(\alpha_{k}+M_{k}\right)} \\
\text { where, } Z_{2} & =\prod_{k=1}^{K} B\left(\alpha_{k}+M_{k}+1, N+L+1-\alpha_{k}-M_{k}\right)
\end{aligned}
$$

The posterior distribution is also a product of K Beta distributions
Z_{2} is a normalization constant to guarantee that the integration of the posterior is equal to 1

Bayesian Inference

Sense
Amplifier
Simplified SRAM array with A cells

$$
p(\boldsymbol{\beta} \mid \mathrm{D}, \boldsymbol{\alpha}, L)=\frac{1}{Z_{2}} \cdot \prod_{k=1}^{K} \beta_{k}^{\alpha_{k}+M_{k}} \cdot\left(1-\beta_{k}\right)^{N+L-\left(\alpha_{k}+M_{k}\right)}
$$

- Maximum-A-Posteriori Estimation

$$
\ln p(\boldsymbol{\beta} \mid \mathrm{D}, \boldsymbol{\alpha}, L)=\sum_{k=1}^{K}\left[\left(\alpha_{k}+M_{k}\right) \cdot \ln \beta_{k}+\left(N+L-\alpha_{k}-M_{k}\right) \cdot \ln \left(1-\beta_{k}\right)\right]-C
$$

$$
\text { where, } C=\ln Z_{2} \quad \text { Independent of } \beta
$$

$$
\begin{gathered}
\frac{\partial}{\partial \boldsymbol{\beta}} \ln p(\boldsymbol{\beta} \mid \mathrm{D}, \boldsymbol{\alpha}, L)=0 \\
\boldsymbol{\beta}^{\mathrm{MAP}}=\frac{\boldsymbol{\alpha}+\mathbf{M}}{L+N}
\end{gathered}
$$

Hyper-parameter Inference

Sense
Amplifier
Simplified SRAM array with A cells

$$
\Theta=\{L, \boldsymbol{\alpha}\} \quad \square \max _{\boldsymbol{\alpha}, L} p(\mathrm{D} \mid \boldsymbol{\alpha}, L)
$$

$$
p(\mathrm{D} \mid \boldsymbol{\alpha}, L)=\int p(\mathrm{D}, \boldsymbol{\beta} \mid \boldsymbol{\alpha}, L) d \boldsymbol{\beta}=\int p(\mathrm{D} \mid \boldsymbol{\beta}) p(\boldsymbol{\beta} \mid \boldsymbol{\alpha}, L) d \boldsymbol{\beta}
$$

$$
p(\mathrm{D} \mid \boldsymbol{\alpha}, L)=\prod_{k=1}^{K} \frac{B\left(\alpha_{k}+M_{k}+1, L+N-\alpha_{k}-M_{k}+1\right)}{B\left(\alpha_{k}+1, L+1-\alpha_{k}\right)}
$$

$$
\max _{a, L} \prod_{k=1}^{K} \frac{B\left(\alpha_{k}+M_{k}+1, L+N-\alpha_{k}-M_{k}+1\right)}{B\left(\alpha_{k}+1, L+1-\alpha_{k}\right)}
$$

Hyper-parameter Inference

Sense
Amplifier

Simplified SRAM array with A cells
$\max _{\alpha, L} \prod_{k=1}^{K} \frac{B\left(\alpha_{k}+M_{k}+1, L+N-\alpha_{k}-M_{k}+1\right)}{B\left(\alpha_{k}+1, L+1-\alpha_{k}\right)}$

- Multi-start Quasi-Newton (MQN) method

- Hyper-parameters initialization
- Randomly select N_{s} samples at each corner, where $N_{s}=r \times N$
- Generate a small dataset $\mathrm{D}_{s}=\left\{x_{k}^{n} ; n=1,2, \cdots, N_{s} ; k=1,2, \cdots, K\right\}$
- $\alpha_{k}=M_{s, k}=\sum_{n=1}^{N_{s}} x_{k}^{n} \quad L=N_{s}$
$\alpha=\left[\alpha_{1} \alpha_{2} \cdots \alpha_{K}\right]^{T}$
- Based on hyper-parameters initialization, generate several trail points
- Solve the optimization problem form each trail point via QuasiNewton method
- Choose the best solution among all local optimums as the final result.

Example: SRAM Access Failure

- 65nm CMOS Technology
- Failure definition:
- Differential bit-line voltage of any cell \leq the SA input offset voltage
- PVT corners:
- 5 process corners: TT, SS, FF, FS and SF

Simplified SRAM array with \boldsymbol{A} cells

Example: SRAM Access Failure

	Relative Errors (\%)							
\# of samples	60	100	140	180	220	260	300	
MC	5.34	4.33	3.65	3.15	2.62	2.25	2.00	
BI-BD	4.59	3.76	3.17	2.75	2.29	1.97	1.76	
BI-BC	3.76	2.72	2.54	2.41	1.98	1.67	1.47	

Conclusion

- Bayesian Inference method based-on Bernoulli distribution with conjugate prior (BI-BC)
- Using a product of Beta distributions as the conjugate prior
- encode the performance correlation among different corners
- Hyper-Parameter Inference by MQN method
- BI-BC achieves up to $2.0 \times$ cost reduction over the state-of-the-art methods without surrendering any accuracy

